CEO
Analyzing WHO HIV data to significantly dicrease the number of HIV cases and deaths.
This chart shows the missing ART coverage needed to match the 100% HIV+ people in the Americas region.
The negative numbers represent the ART coverage % remainder for each country to match the 100% HIV+ people.
Conclusion
Data science head team
# select only the countries in Americas region
data = coverage.loc[coverage['WHO Region']=='Americas']
# select the columns from the df for analysis
art_cov = data[['Estimated ART coverage among people living with HIV (%)_median','Country']]
# set countries as indexes
country_index = art_cov.set_index('Country')
# calculate the ART coverage each country should meet to cover the 100% od people living with HIV
missing_cov = country_index - 100.0
#Drop any row with missing values (NaN)
no_empty = missing_cov.dropna(how='any')
# ploting the data
no_empty.plot(kind='barh')
plt.xlabel('missing ART coverage')
plt.ylabel('Missing % ART coverage (%)')
plt.title('Missing ART coverage to meet 100% HIV+ people')
plt.legend(['Missing ART coverage to match 100% people HIV+'], bbox_to_anchor=(1.05, 1), loc='upper left', fontsize='medium')
plt.savefig('artCoverage.jpeg')
Pediatric ART coverage in the region
# importing the dataset
pediatric = pd.read_csv('art_pediatric_coverage_by_country_clean.csv')
# assign Congo to Africa region
pediatric.loc[36,'WHO Region'] = 'Africa'
# select only the countries in Americas region
haiti_ped = pediatric.loc[pediatric['WHO Region'] == 'Americas']
# selct the columns for analysis
data = haiti_ped[['Country','Estimated number of children needing ART based on WHO methods_median']]
# set countries as indexes
ind = data.set_index('Country')
# remove empty rows (NaN)
rmv_missing = ind.dropna(how='any')
#Haiti has the highest number of HIV positive children in need of ART in the Americas based on WHO methods.
# ploting data
rmv_missing.plot(kind = 'barh')
plt.xlabel('Number of children')
plt.ylabel('Country')
plt.title('Estimated number of children needing ART based on WHO methods')
plt.legend(['Estimated number of children needing ART'], bbox_to_anchor=(1.05, 1), loc='upper left', fontsize='medium')
Prevention from mother to child transmission of HIV (PMTCT)
# import dataset
pmtct = pd.read_csv('prevention_of_mother_to_child_transmission_by_country_clean.csv')
# select only the countries in Americas region
haiti_pmtct = pmtct.loc[pmtct['WHO Region']=='Americas']
# select columns need for analysis
pmtct_data = haiti_pmtct[['Country','Received Antiretrovirals','Needing antiretrovirals_median']]
# set coutries as indexes
pmtct_ind = pmtct_data.set_index('Country')
# drop Congo from the region
only_amer = pmtct_ind.drop('Congo')
# remove fields with no values (NaN)
rmv_null = only_amer.dropna(how='any')
# convert data in for ploting
rmv_null = rmv_null.astype({"Received Antiretrovirals": float})
# ploting data
rmv_null.plot(kind='bar')
plt.title('PMTCT - ART coverage')
plt.legend(['Received Antiretrovirals','Needing antiretrovirals_median'], bbox_to_anchor=(1.05, 1), loc='upper left', fontsize='medium')
plt.ylabel('number received vs number needing ART')